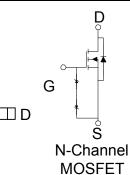

Product specification

AM2306NE

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

- Low r_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SOT-23 Surface Mount Package Saves Board Space
- High power and current handling capability
- Low side high current DC-DC Converter applications



SOT-23

Top View

2000V

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)								
Parameter			Limit	Units				
Drain-Source Voltage			30	V				
Gate-Source Voltage			±20					
Continuous Drain Current ^a	$T_A=25^{\circ}C$	T _n	3.5					
	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	тр	2.8	А				
Pulsed Drain Current ^b		I _{DM}	16					
Continuous Source Current (Diode Conduction) ^a			1.25	Α				
	$T_A=25^{\circ}C$	D	1.3	W				
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	гD	0.8	vv				
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C				

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Maximum	Units				
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{\theta JA}$	100	°C/W				
	Steady-State		166	°C/W				

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

AM2306NE

Parameter	Sumbol	Test Conditions	Limits			Unit	
rarameter	Symbol	Test Conditions	Min	Тур	Max	Umt	
Static							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	1			V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24 V, V_{GS} = 0 V$			1	uA	
	IDSS	$V_{DS} = 24 V, V_{GS} = 0 V, T_J = 55^{\circ}C$			25	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 V, V_{GS} = 10 V$	6			А	
Drain-Source On-Resistance ^A	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$			58	mΩ	
		$V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$			82		
Forward Tranconductance ^A	g _{fs}	$V_{DS} = 15 \text{ V}, I_D = 3.5 \text{ A}$		6.9		S	
Diode Forward Voltage	V _{SD}	$I_{\rm S} = 2.3$ A, $V_{\rm GS} = 0$ V		0.8		V	
Dynamic ^b							
Total Gate Charge	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 3.5 \text{ A}$		2.2		nC	
Gate-Source Charge	Q _{gs}			0.5			
Gate-Drain Charge	Q _{gd}	1 <u>0</u> – 5.5 A		0.8			
Turn-On Delay Time	t _{d(on)}			16			
Rise Time	t _r	V_{DD} = 25 V, R_L = 25 Ω , I_D = 1 A,		5		nS	
Turn-Off Delay Time	t _{d(off)}	$V_{GEN} = 10 V$		23		115	
Fall-Time	t _f			3			

Notes

- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.